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Abstract-Numerical methods for the computation of singular points of nonlinear equations
G(u, ~, IL) = 0 are discussed, where ~ and IL are real parameters. Simple and double limit points
are treated in some detail and numerical algorithms are presented and applied to elastic shell
stability problems. The case of simple symmetry breaking bifurcation points is also treated with
applications to nonsymmetric bifurcation from axisymmetric states of deformation of shells of
revolution.

I. INTRODUCTION

The numerical analysis of singular points of nonlinear functional equations has been
the subject of a series of recent contributions in the literature. It is the purpose of this
paper to present some selected results in a form directly applicable to the calculation
of limit and bifurcation points, with particular application to stability problems of elastic
shells. This amounts to giving a more detailed analysis of some of the methods and to
supplement them appropriately, in order to convert some theoretical results of singular
point theory into numerical algQrithms that work.

The mathematical theory of limit and bifurcation points is usually developed in an
abstract functional analysis setting. But numerical analysts have found that many the
oretical results are directly applicable to the computation of certain simple types of
singular points and of branches of solutions emanating from bifurcation points. For
merly, numerical stability analyses often gave unreliable and inaccurate answers be
cause of the numerical difficulties encountered near singular points. We wish to show
that these difficulties can be overcome by making appropriate use of recent results of
singularity theory. The price to be paid is that so-called "extended systems" of equa
tions have to be solved numerically, which can be done quite efficiently using standard
computer software, as will be shown in what follows.

2. EXAMPLE: BUCKLING OF SPHERICAL SHELLS

It is well known in the theory of stability of elastic shells that basically two types
of instabilities may occur: limit points, usually connected with snap-through phenom
ena, and bifurcation points. Both types can be illustrated by the problem of a shallow
spherical shell under uniform pressure p, with IJ. = 2(H/h)jI2(l - vl) describing the
shell geometry [1]. Let v be the deformed volume and consider axisymmetric defor
mations. Then we have a nonlinear monotone load-deflection curve for IJ. < 1J.o, and
an s-shaped curve with two limit (turning) points for IJ. > 1J.o. In Fig. 1,-the points A
and B are examples of "simple" limit points. At the transition between the two types
of p-v-curves, we find a "double" limit point Cat IJ. = 1J.o.

The bifurcation type instability occurs, for instance, if new branches of nonsym
metric normal deflections of the form wn(r) cos nO, n = 1, 2, ... take otT from the
axisymmetric p-v-relation at certain critical values Pn. The points D, E in Fig. 1 are
"simple" bifurcation points while F is a "double" bifurcation point, where two non
symmetric branches intersect the "primary branch" at the load PF.
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v
Fig. 1. Load deflection diagram for a shallow spherical shell under uniform pressure: axisym

metric limit !loints A. B, C (snap buckling) ,lnd symmetry breaking bifurcation buckling.

A nonlinear boundary value problem must be solved in order to find a point on the
axisymmetric p-v-curve of Fig. 1. This can be done by the standard Newton method,
provided the solutions are isolated, which is a basic requirement for any numerical
algorithm. However, at a limit point the solution is no longer isolated, hence numerical
difficulties must be expected. In order to locate a limit point with some accuracy by
interpolation, a large number of closely spaced points on the p-v-curve should be
computed, which is both costly and difficult because of the near singularity of the
boundary value problem near a limit point (see Fig. 2).

Similarly, nonsymmetric bifurcation points can be found by interpolation, if suffi
ciently many points are computed near the critical loads Pn [2]. These procedures of
indirect calculation of limit and bifurcation points are unsatisfactory, they involve a
good deal of trial and error strategy, and they yield little information on the accuracy,
in particular in the case of limit points.

3. THE COMPUTATION OF SIMPLE LIMIT POINTS

The essence of the more recent approach to compute singular points directly and
accurately consists in deriving from the given equations a new system of equations
called the extended system whose solution at the limit or bifurcation point is isolated.

p

limit point

v
Fig. 2. Indirect approximate calculation of limit and bifurcation points by interpolation.
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The Newton method is then applicable, provided lhOlt close enough starting values for
the iteration for the extended system are found. The latter point is usually not ade
quately treated in papers on numerical methods. However, in the present context it is
crucial to devise methods that will produce appropriate starting values.

We begin with some formal definitions and known results from bifurcation theory,
employing standard notation (sec [3-7]). The basic equations and boundary conditions
are denoted by G(u, A) = 0, where G is a nonlinear mapping G:OO x r;}/t - 00, 00 a
Banach space. The solution set is

Sci = {(u, A) IG(If, A) = 0, If E~, A E C1t}.

Assuming that all Frechet derivatives G", GI., G"", ... of G are continuous, and de
noting by (v, u) the dual pairing between elements u E 00 and v E 00' (00' = dual space
of 00), we have

Definition I. (u,~) is called a regular point of Sa if G,; I (U, ~) exists, otherwise it
is called a singular (exceptional) point.

Definition 2. A singular point (uo, Ao) E Sa is called a limit (turning) point with
respect to A, if

(a) dim Ker G,,(uo, AO) = I, Ker G" = {a<l>o Ia E r;}/t},
(b) codim Range G,,(un, An) = J, Range G" = {v I ("'n, v) = O},
(c) GI.(un, An) It Range G,,(lfn, An),

where <l>n E 00, <1>0 ¥< 0 and ljJo E 00', IjJn "" O. Condition (b) implies G,,(lfo, An)'ljJn = 0,
where L' is the adjoint of a linear operator L:oo - 00. If (u, ~) is regular, h = 0 is the
only solution of G,,(uo, Ao)h = 0, otherwise a nontrivial solution h "" 0 exists. It is
condition (c) that distinguishes a limit point from a bifurcation point.

It is well known that near a limit point (uo, Ao) Sa may be represented by u(s), A(s),
for I s - Sn I~ 8, s real, such that

u(sn) = Uo, A(so) = Ao, I ~(s) I + II u(s) II > 0

u(so) = <1>0, ~(so) = 0, u(s) = s<l>o + v(s) ,

where v E Vo and 00 = Ker G,,(Un, An) El Vo.
Definition 3. A limit point (un, An) E Sa is called simple if ~(Sn) ¥< 0, otherwise it

is nonsimple; if ~(so) = 0, ~(so) ¥< 0, (uo, Ao) is called a double limit point.
We now introduce the extended system of G(u, A) = 0 at a limit point by

G(u, A) = O}
G,,(u, A)h = 0 G(u, h, A) = 0
I(h) = J

I is a functional with the properties 1(0) = 0, and I(h) ¥< 0 implying h "" O. If I is linear,
we have I(h) = (I, h), I E 00'.

The significance of G = 0 is that calculation of G", with v : = (u, h, A), shows that
(a)-(c) of Definition 2, together with eqn (1) and the condition ~(so) ¥< 0 imply that
G.-: I exists, and hence G(u, h, A) = 0 has isolated solutions. In recent papers, Moore,
Spence and Werner [8,9] proved that the converse also holds. Thus one has

THEOREM A. (Uo, Ao) E Sa is a simple limit point if ana only if

Ker G,,(Uo, <1>0, Ao) = {OJ, Range G•.(uo, <1>0, Ao) = 00 x 00 x r;}/t.

The explicit computation of 0" yields

(3)
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where a superscript 0 indicates evaluation at (uo, Xo), that is, G~ = GII(uo. ~o), etc. In
classical notation 11'. k. IJ. arc the variations 811. M. 8~. respectively. Furthermore. we
have from [8]:

THEOREM B. If (uo, Ao) E Sc is a nonsimple limit point, then dim Ker G~~ = :::
codim Range ~, and

(I, u.) = o.

This theorem implies that eqn (2) is not a suitable system for computing double limit
points. This case will be discussed in the next section. For simple limit points, Theorem
A implies that eqn (2) can be solved by Newton's method.

In applications, one usually computes a sequence of solutions of G(u, A) = 0 on a
branch C. of Sa where one expects to find limit points. Suppose (ii, i) is a regular
point on C. close to a simple limit point (uo, Ao). In order to switch from solving G(u.
A) = 0 to solving the extended system o(u, h, A) = 0, we need a starting value Ii for
h in order to apply Newton's method to (;(u, h, A) = 0, while u = ii and A = i may
serve as starting values for u and~, respectively. Ii should satisfy the last two equations
of (2) approximately. The method proposed here [10] is to introduce an inhomogeneity
c* E ~ with c* =I' O. Then the equation

GII(ii, i)h* = c* (4)

has a unique solution h* =I' O. Now set ho : = ah*, a E 'lA, and determine a from l(ho)
= l(ah*) = l. It follows that ho satisfies

GII(ii, i)ho = c, l(ho) = I, with c = ac* (5)

and we have c - 0 as ~ - ~o. The problem (4) is linear and is solved together with
G(u, A) = O. As soon as II c II in eqn (5) decreases significantly along C., a singular
point is approached and we then switch to solving eqn (2), taking ii, A, ho as starting
values for the Newton iteration. The method is simple and generally. applicable.

A different method for computing starting values has been proposed in [II]. How
ever. it is restricted to the case where G represents a boundary value problem for
ordinary differential equations (see the discussion in [12]).

Remark. The condition that the equation for UI in Theorem B is solvable can be
written as (t!Jo, G::II <l>o<l>o) = o. Thus one has the following characterization of simple
limit points

often taken as definition in the literature.

4. THE COMPUTATION OF DOUBLE LIMIT POINTS

Like in the spherical shell problem (Section 2), we now consider a nonlinear equation
depending on two real parameters. Keeping the same notation as in the preceding
section, we write G(u, A, IJ.) = 0, where G:~ x 'lA x ~-~. For fixed IJ. = ji, assume
that G has a limit point with respect to A, that is, (uo, Ao, ji) is a limit point in accordance
with Definition 2. Consider the extended system

G(u, A, IJ.) = O}
GII(u, A, lJ.)h = 0 F(v. IJ.) = 0,
l(h) - t = 0

v: = (u, h, A). (6)
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Suppose (uo, Ao, 1-1.0.) is a non simple limit point of G with respect to A, then Theorem
B implies

(a' ) Ker ~ = Ker P!. = {a<l>o Ia E (!It}, <1>0 E Y = 00 X 00 X (!It

(b ' ) Range P!. = {y E Y 1('1'0' y) = O} where <1>0 = (<1>0, til, 0), '1'0 E Y' .
Hence F,-:- I does not exist at (v, ....) = (vo, ....0), with Vo = (uo, <1>0, Ao), consequently
(vo, 1-1.0) must be a singular point of F(v • ....) = O. In order to guarantee that F has a
limit point with respect to .... ' we assume

(e') P~ ~ Runge r~~.

The following theorem [8) reduces the computation of a double limit point of G to that
of a simple limit point of F.

THEOREM C. Assume that condition (c ' ) holds. Then a double limit point (uo. Ao.
1-1.0) of G with respect to Acorresponds to a simple limit point (vo. 1-1.0) of F with respect
to .....

(7)v. kEY

Thus, in order to compute a double limit point of G, we have to solve the extended
system of F(v, ....) = 0, that is.

F(v, ) = O}
F,,(v )k = 0 F(v, k • ....) = 0
m(k) - I = 0

where m is functional that ensures k =F 0, for instance (m, k), In E Y'. According to
Theorems A and C, F:.-' exists at (v, ....) = (vo, ....0), where z : = (v, k, ....), implying that
the solutions of F(v, k, ....) = 0 are isolated, so that the Newton method is applicable.

It was shown in [12) that eqn (7) can be simplified by returning to the original notation.
In fact, a short calculation reduces eqn (7) to

G(ll, A, ....) = 0, G,,(u, A, ....)h = 0,

G,,(tI, A, ....)IV = - G,II/(u. A• ....)hh, (8)

I(h) = 1, 1'(h)IV = 0,

which is a system of five equations in the five unknowns u. h, IV E 00 and A, .... E (!It.

If(/. h) = I, one has (I, IV) = O. In [8], the system (7) was solved by a method offalse
position. However, in view of Theorem C, we have found it convenient to solve eqn
(8) by the Newton method as in the case of simple limit points. For this we need
sufficiently close starting values for both h and IV in (8). This can be done precisely as
in the previous section. At a regular point (ii, ~, iL), one first solves G"h = c* as in
eqn (4). The solution h* is then scaled to satisfy I(h) = I, which gives ho and c = ac*
according to eqn (5). With this, w = w* is computed from eqn (8) without the restriction
I'(h)w = O. If (ii, ~, iL) is approaching a double limit point, c - 0 and l'(h)w* - O.

5. NUMERICAL IMPLEMENTATION:.ODE

A computational procedure will now be described to solve the extended systems for
the case that G(u, A) = 0 stands for a system of ordinary differential equations (ODE)
on a finite interval J = [a, b], with two-point boundary conditions. An example is the
axisymmetric deformation of shells of revolution [13, 14], where u = [f(x), g(x)], f is
a deflection, g a stress function, A is a load parameter and .... is a shell curvature
parameter.

Let the boundary value problem (BVP) be formally written as

Lu = N(x, u, A, ....), x E I, Bu = 0, x = a, b (9)
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where L, B are linear differential operators and N is in general nonlinear in u, A and
fJ.. The extended systems will be formulated in such a way that standard software for
solving ODE-BVPs is directly applicable. A convenient package is COLSYS [15], which
uses spline collocation in conjunction with the Newton method. It also allows for regular
singular points at x = a, b that occur, for instance, in the Reissner shell equations [13,
14].

Consider first simple limit points governed by eqn (2). Taking [(h) = II h 112, we have
from (2), for a fixed fJ.,

Lu = N(x, u, A, fJ.)

Lh = N,,(x, Ii, A, fJ.)h

"y' = hTh = L hT
;-1

A' = 0

Bu = 0

Bh = 0

y(a) = 0

y(b) = 1

(10)

N" is the matrix (ilN;liJuj), h = [hl(x), ... , h,,(x)]. If m is the order of L (m = 2 for
the axisymmetric shell problem), eqns (10) represent a BVP of order 2m + 2 in the
unknowns u, h, y and A. Different choices for [(h) are discussed in [It] and [12].

In order to obtain starting values for h, one simply replaces A' = 0 in eqn (10) by
c' = 0 and modifies the second equation of(lO) to

Lh = N,Ax, u, >.:, fJ.)h + ce (11)

where e is an arbitrary constant unit vector. The three equations for y(x) then imply
that c satisfies (5).

Turning to the computation of double limit points, the first two equations of eqn (8)
together with [(h) = 1 are identical with eqn (10), except that fJ. is an additional variable.
The remaining equations of (8) are, for the present case,

Bw = 0

Lw - N,,(x, u, A, fJ.hv = - N,IIt(x, U, A, fJ.)h 0 h

"z' = hTw = L h;w;,
;=1

(12)

fJ.' = 0, z(a) = z(b) = O.

N"" is a third order tensor, that is, the right-hand side of the first equation of (12) reads

i = I, ... ,k.

The extended system (10), (12) for double limit points represents a BVP of order 3m
+ 4 in the unknowns u, h, w, y, z, A and fJ.. It is obvious how to modify the system
to obtain the starting values for hand w.

Remark. It has been assumed here, for simplicity, that N is not a differential op
erator with respect to u. However, all of the above equations can easily be extended
to this case by computing appropriate Frechet derivatives; an example is given in
Section 9.

6. NUMERICAL IMPLEMENTATION: POE

Let G(u, A) = 0 denote a system of nonlinear partial differential equations (PDE)
on a finite domain D k '1JtN, with linear homogeneous conditions on the boundary aD
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of D. Again, treating for simplicity a special case, let u ::: U(XI, ••• , XN) be a scalar
function, and let the BVP be given by

Lu = Af(u, fL) xED, Bll = 0 x E aD. (13)

L is a linear elliptic operator, f a nonlinear function of u and fL, and" B a boundary
operator compatible with L. An example treated frequently in the literature is the
thermal ignition problem

tJ.u + A explu/(I + fLU)} = 0 xED. u = 0 x E aD.

Both simple and double limit points occur in this problem. The system of shallow shell
PDEs represents another but more complex example of particular interest, for which
we expect to report results in a sequel to this paper.

The extended system (2) is given by

Lu = Af(u. fL) } Bu = O}
Lh = Afll(u, v.)h xED Bh = 0 x E iJD.
l(h) = 1.

Two simple choices of I used in what follows are

(14)

l(h) = JD h dx, (15)

where XM is a point sufficiently distant from aD, for instance the midpoint when D is
symmetric.

In order to solve eqn (14) by Newton's method, let us first determine starting values
for h by solving the linear inhomogeneous BVP

Lh* = }.f,,(u, 'ji)h* xED. Bh* = c* xE aD (6)

with a constant c* ~ O. Here (ii, }.) is a regular solution. jj: remains fixed along the
solution branch in question. The desired starting value h is obtained by the scaling
l(a.h*) = 1 as in eqn (5). The Newton iteration for eqn (14) is, with Un'" I = Un + V n,
h" ... I = h" + H", An ... I = An + An, f' : = f" and suppressing the dependence of f on
fL.

LU" - Anf'(u")U,, - f(un)A" = 'n

LH" - A"f'(un)H" - AIlf"(ull)h"V" - f'(u")h,,An = 511

'11 : = A"f(u,,) - Lu,,, 5" : = A"f'(un)hn - Lh" (17)

BUn = BHII = 0 on aD

I(Hn ) = 0, provided l(ho) = J.

In order to solve the linear system (16) and (17) numerically, D is either replaced by
a grid FN of N interior mesh points Pi' or D is subdivided into N finite elements. In
the former case, all functions Un. V n etc. are restricted to FN, and any standard finite
difference apporximation for L can be used for the terms LVn, LH". Let z be the
column vector of h*(Pi), Pi E FN, i = 1, ••• , N. then the discretized eqn (16) can
be written as a linear system Az = r. with a symmetric N x N-matrix A (if L is the
Laplace operator, A is block-tridiagonal). Standard methods and routines for the fast
solution of such systems are available.
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The simple structure of A is, of course, destroyed in the discretized eqn (17), when
written as a linear algebraic system Cz = s, with.

z : = [U,,(Pd, H,,(P1), U,,(P2), H,,(P2), ... , U,,(PN ), H,,(PN ), A"V.

As before, Pi E FN, i = 1, ... , N, hence both z and s are 2N + 1 vectors. The system
Cz = s of eqn (17) then has the following structure [10]

(18)

(19)

where A is a K x K matrix, K = 2N, a, C, f and x are K vectors and 13, P and ~ are
scalars. The column a represents the coefficients of the unknown ~ = An' the row cT

is either the discretized integral eqn (15) or simply the condition H,,(XM) = 0 implied
by eqn (15). Matrices as in eqn (18) are known as bordered matrices, there is a well
known algorithm to solve eqn (18) by merely inverting A. However, A is singular at
the limit point. Although Newton's method can still be applied, the convergence is no
longer quadratic near the singularity, which has been observed in numerical calculations
for the thermal ignition problem mentioned earlier.

In order to obtain an algorithm that converges quadratically, we first reorder the
variables in the vector z and rewrite eqn (18) in the form

(~' ~, ::) (::) = (~:)
o cf 0 ~ 0

where xf = (U,,(P I ), ••• , U,,(PN », xf = (Hn(PI ), ••• ,H,,(PN »and ~ = A. Here A'
is a banded sparse N x N matrix obtained by discretizing the operator L - 'A"f' (u,,).
If L = a, A' is a standard block-tridiagonal matrix. The term -'A"f"(u")h,, in eqn (17)
transforms into the diagonal matrix D. Furthermore, we rearrange a, c and f in ac
cordance with the splitting of x into XI and X2. As A I is still singular at a limit point,
the algorithm for bordered matrices cannot be applied to eqn (19). Now let A* denote
the (N - 1) x (N - 1) matrix obtained from A I by cancelling the last (or first) column
u and row vT

• Reducing D in the same way, denoting (N - 1) vectors obtained from
ai, etc. by cancelling the last (or first) component by a1, etc. and exchanging columns
and rows, we can rewrite eqn (19) in the form

where

(

A* 0 u* 0 a1) (Xf) (ft)D* A* 0 u* a~ x~ d
V*T 0 a 0 al • ~I = PI

o V*T 8 a a2 ~ P2

o d T 0 "I 0 ~ 0

(20)

for i = 1,2 and cf = (dT , "I). a is the element AJ..w (or A/I) of the matrix A', 8 is the
last (or first) element ofD. Note that all starred vectors and 0 are (N - 1) dimensional.
At simple limit points, A* can be assumed to be nonsingular. In fact, it can be proved
for special second-order equations, but there is a heuristic argument as well as con
vincing numerical evidence in more general cases.

The matrix of the system (20) may be called a threefold bordered matrix. The al
gorithm for simply bordered matrices can be generalized to this system as follows.
First solve the subsystems

~: ~*) (:) = (:) equivalent to 1:: =: _D*e, (22)
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setting the right-hand sides e, requal to
87

(23)

Denote the solutions p and q of eqn (22) by p;, q; and i = I, 2, 3, 4 in the order of the
sequence eqn (23), and form a 3 x 3 system from the lower right block of the matrix
in eqn (20) and Ph P2, in order to find ~I, E2 and E = E3. This system can be reduced
to

(ex - s.> ~J - S2~ + (al - S3) EJ = Pt - S.

(8 - t.> Et + (ex - t2) ~2 + (a2 - t3) EJ == P2 - t.

- 1'1 ~I + ('Y - 1'2) ~2 - 1'3EJ == - 1'.

where

(24)

i == I, ... ,4.

Finally, the solution XI and X2 is obtained from
3

XI == p. - ~ ~p;
;-1

3

X2 == q. - ~ ~q;.
;-1

(25)

Note that, apart from the simple 3 x 3 system eqn (24), the only matrix to be inverted
is A *, which has the same structure as A', except that it is regular. Hence, a banded
Gaussian elimination routine with partial pivoting can be used to solve the systems in
step (22) and (23) of this algorithm. For large N, this step may also be carried out by
an SOR-iteration or one of the more recent fast linear systems solvers (e.g. multigrid).

The extended system for double limit points can be discretized in much the same
way. According to eqn (8) the only additional equations are Gu(u, A, ~)w = -Guuhh
and I' (h) w == O. Hence, in addition to XI, X2 and ~, we have in the Newton linear
system a vector X3 = (W(P I ), ••• , W(P)N» and a scalar TJ = M u , with ~n+ I == ~n

+ Mn' The * operation then leads to a five-fold bordered matrix, where again A* is
the only large matrix to be inverted (for details see [12]).

7. ON THE COMPUTATION OF SIMPLE BIFURCATION POINTS

In this section we consider briefly a different type of singularity of an equation
G(u, A) = O.

Definition 4. A singular point (Ull, All) E Sa is called a simple bifurcation point if
the conditions (a), (b) of Definition 2 are satisfied and if (c) is replaced by

(d) G>..(UlI, AO) E Range G,,(uo, AO),

which can be written equivalently as (\jIo, G>..(uo, Ao» = 0, with \jIo as in Definition 2.
In the special case G(O, A) == 0 for all A E ~, a point (0, Ao) on the trivial solution
branch (0, A) that satisfies (a), (b), and (d) is called a primary bifurcation point.

The numerical computation of bifurcation points is generally a much more difficult
problem than the computation of limit points. An extende.d system similar to eqn (2)
incorporating condition (d) is

G(U, A) == 0,

(til, G>..(u, A» == 0,

Gu(u, A)' til = 0

(til, k) - 1 == 0
(26)

where k E !I is chosen to scale til. This system in the unknowns u, til and A is over
determined. Special techniques for solving eqn (26) have been developed; some use
the generalized inverse L + of a linear operator L, others use convex optimization.

In [11], the extended system (2) was used also for computing bifurcation points.
In view of Theorem A, its solutions are not isolated in general. However, there are
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Fig. 3. Simple bifurcation points in the cases A " 0 and A = 0 (pitchfork bifurcation point).

some specific cases for which isolateness can be recovered. One case of particular
interest in elastic stability is treated in Sections 8 and 9. It will be convenient to quote
here a well-known result from bifurcation theory (see, for example [16]).

THEOREM D. Suppose (uo, Ao) is a simple bifurcation point of G(u, A) = 0, and let
the constants A, B, C be defined by

(27)

Wo : = solution of ~wo = -~, (1/10, wo) = 0,

then the solutions of G(u, A) = 0 in a neighborhood of (uo, Ao) can be written in the
form

u = Uo + a<l>o + v(a, 13), A = Ao + 13, v(O,O) = 0 (28)

where v is uniquely determined for Ia I :5 ao. 113 I :5 130' ao and 130 positive, and where
the "bifurcation equation"

g(a, 13) : = (1/10, G(uo + a<l>o + v(a, 13), Ao + 13» = 0

determines the relation between a and 13. The function g has the properties

g(O, 0) = ga(O. 0) = g~(O, 0) = 0

gaa(O, 0) = A, ga~(O, 0) = B g~~(O, 0) = C.

(29)

Moreover, the solutions near (uo, Ao) consist of two branches which intersect trans
versely at (uo, Ao) as indicated in Fig. 3. For A .p 0 both branches, for A = 0 only one
branch can be parameterized by °A. The second branch in the case A = 0 can be
parameterized by ± (A - Ao)l/r or ± (Ao - A)I/r, where r is a positive integer r > 1 (e.g.
r = 2 if g~~~(O, 0) .p 0). In terms of A, Band C, eqn (29) can be written as

Aa2 + 2Ba13 + C132 + g.(a, 13) = 0, g. = 0[( Ia I + 1131 )2]. (30)

Omitting the higher order terms represented by g., solutions of eqn (30) for sufficiently
small a, 13 are in 1-1 correspondence to the solutions of G(u, A) = 0 near (uo, Ao). We
conclude this section with

Definition 5. A simple bifurcation point (uo, AO) is called a pitchfork bifurcation
point if A = 0, B .p 0 (see Fig. 3).
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8. THE COMPUTATION OF SYMMETRY-BREAKING BIFURCATION POINTS

Some of the numerical difficulties in the computation of bifurcation points disappear
when bifurcating solutions do not inherit the symmetry of a primary solution branch.
Some simple types of symmetry change have been discussed in [16] and [17]. It is
assumed there that a symmetry S E L(~, ~) has the properties

S "" I, S2 = I, G(Su, X) = SG(u, X), ~ = B s (f) Ba (31)

whereBa = {uE~ ISu = -u}andBs = {uE~ ISu = -u}.lnthisnotation,symmetry
breaking bifurcation is defined as follows.

Definition 6. A simple bifurcation point (uo, Xo) is called symmetry breaking if Uo
E B.• and <1>0 E Ba , where <1>0 E Ker ~, <1>0 "" O.

For the computation of symmetry-breaking bifurcation points, we make use of the
following basic theorem, proved in [l7} for the above symmetry S.

THEOREM E. Let (uo, >.0) be a simple symmetry-breaking bifurcation point with Uo
E Bs and 4>0 E Bo • Then A = 0 is satisfied. Hence, if B :F 0 also holds, (uo, >.0) is a
pitchfork bifurcation point. Furthermore, if the extended system (2) is considered as
a mapping G:Z - Z with Z : = Bs x Bu x ~, then (uo, ho, Xo) is an isolated solution
of eqn (2) if and only if (uo, Xo) is a pitchfork bifurcation point.

An example of eqn (31) is S = -I, implying, G( -u, X) = -G(u, X). Here B.. =
{OJ, Bu = 00, and bifurcation occurs from the trivial solution branch (0, X), a situation
contained in the above theorem.

As a second example of symmetry breaking, consider the more concrete case where
G stands for an elliptic BVP involving u : = u(r, 6), with r, 6 referring to polar coor
dinates. Suppose there exists a symmetric branch C.. of solutions (u, X) where u =
uo(r) E Bs • We then look for points (uo, Xo) on Cs where new branches Cu ofasymmetric
solutions u = u(r, 6) E Bu intersect, for instance solutions of the type u = VCr, X)
cosn6 + u" with Ut - uo(r), V - 0 as X- XO , n a positive integer. Although the
symmetry is different here from that in eqn (31), some conclusions of Theorem Estill
hold. First, as symmetry breaking implies A = 0, it is sufficient to verify B "" 0. Theorem
E can then be applied, and the calculation of (uo, Xo) proceeds as in the case of simple
limit points by solving the system

G(u, X) = 0, Gu(u, X)h = 0, l(h) = 1. (32)

For pitchfork bifurcation points, the solution (u, h, X) is isolated and vice versa. Note
that in eqn (32) u E Bs , h E Ba , that is, u = u(r), h = her, 9). The computational
procedures for solving eqn (32) have been discussed in Sections 5 and 6. With appro
priate changes due to u E Bs and h E Bo , these procedures also apply to the computation
of symmetry-breaking bifurcation points.

9. APPLICATION TO SPHERICAL SHELL ~ROBLEMS

The computation of symmetry-breaking bifurcation points will now be illustrated by
the spherical shell buckling problem. Resuming the discussion of Section 2, consider
a clamped shallow spherical sheJi under axisymmetric normal load per). The basic
equations can be written in the dimensionless form [2]

•_ {!:J.2f - IJ.!:J.g - K[f, g] - Ap(r) = 0
G(u, X, !J.) • - !:J.2g + IJ.!:J.f + iK[f, f] =° (33)
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1 1AI = Irr + ;Ir + ;2199, K[I, g] : = M[I, g] + N[f, g],

rM[I, g] : = Irr( gr + ;gnn) + grr(fr + ;foo) ,

I I I
"2r'lN[f; g] := ;(1rego + IegrfJ) - I regrO - ;2I9gll,

H
fJ. = 2m2t' m2 = [12(1 - v2)] 1/2 ,

and u = (I, g)T, with I and g denoting dimensionless normal displacement (w) and
radial stress resultant (Nr ), respectively. H is the shell rise, t the shell thickness, and
A is the dimensionless load intensity, with Iper) I ::s 1. The boundary conditions are

at r = I (34)

The Frechet derivative Gu , computed from eqn (33), is

G ( \ ) = (A2
- K[g,.], - fJ.A - K[I,.])

u u, 1\., fJ. fJ.A + K[f,.], A2 (35)

In the following, we shall take G to include both eqns (33) and (34), but as the boundary
conditions are linear, the part of G given by eqn (34) remains unchanged in the cor
responding part of Gu • Obviously, we have from eqn (33)

(
-per»)GI\ = 0 and Gull. = O. (36)

Setting hi = (II, gl)T, h2 = (12, g2V, the second Frechet derivative Guu can be written
as

(37)

The symmetry K[I, g] = K[g, f] has been used in the above calculations. As the
equations (33) are quadratic, we have Guuu(u, A, fJ.) Iii O.

Consider now a branch C.. of axisymmetric solutions [fer), g(r), A] of G(u, A, !L) =
0, for fixed fJ.. In this case, eqn (33) reduces to a pair of second order ODEs [2]. We
wish to find symmetry-breaking bifurcation points on C... More precisely, we seek
nontrivial solutions h = (<1>, I\1)T satisfying Gu(uo, AO' fJ.)h = 0 for some A = AO' where
Do = uo(r) = (I, g)T and h = hn(r) cos nO, n a positive integer. This can be written
explicitly as

A2<1> - !LAI\1 - K[g, <1>] - K[f, 1\1] = 0
A21\1 + fJ.A<I> + K[I, <1>] = 0

(38)

in accordance with eqn (35), together with the boundary conditions (34) applied to <1>,
1\1 instead of I, g. The K-operators in eqn (38) reduce as follows

K[g, <1>] = M[g, <1>] = ; [gil ( <l>r + ; <1>99) + g' <l>rr] ' (39)
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and similarly for KIf, 41] and KIf, ell]. Writing ell == elIn(r) cos ne, 41 = 41n(r) cos ne,
eqns (38) reduce to a pair of fourth order ODEs for elIn' 41n' which are given below.
Suppose that eqn (38) and (36) (applied to ell and 41) have a solution hO = (et>0, 410 )T 7':
Oat (110, Ao), then condition (d) is satisfied. Indeed, setting hO ;: [et>~(r), 41~(r)Tcos nO],
we find

(2.. (I
(bO, ~) = Jo Jo (- p(r>et>~(r) cos nO] r dr de = 0,

using eqn (36), and hence (110, Ao) is a bifurcation point according to Definition 4. Next
we show that A = 0 of eqn (27) is satisfied. From eqn (37) we have

(bO, ~"ho ® bO) =L2

..LI
( - 2el1°K[elI°, '1,0] + ljIoK[et>°, et>°])rdrdO

=L2

"cos3 nOdOLI
4»I(r)dr +L2

"cosnosin2 nOdOLI
4»2(r)dr =0 (40)

for some functions 4»1, 4»2 depending on elI~(r), 1jI~(r), but whose form is immaterial.
Thus we have verified A = 0 for the type of symmetry breaking at hand. In Theorem
E, this comes out as a consequence of symmetry breaking, provided the symmetry S
is of the special form eqn (31) with !i = Bs <t> Bu. In the present case we may define

Bs = Bo := Uf(r), g(rW), Bu = Bn : = ([fer) cos ne, g(r) cos ne]T}.

Thus we have G,,(uo, Ao, jJ.)bO E Bn , but Guu(uo, AO' jJ.)bobo E Bo <t> B2n • In order to
show that (00, AO) is a pitchfork bifurcation point, we need to verify B 7':- 0 (Theorem
E). In view of eqn (36), this condition reduces to

(41)

The equations for hI ;:: (et>I, IjII)T are,

A2et>1 - K[g, et>l] - jJ.AIjII - K[!, 411] = per)

A21j11 + K{f, elI J
] + J,LAelI J = 0

together with eqn (34), applied to et>1, 1jI1. It follows that hI = h&{r) + aho E Bo <t> Bn •

The last equation of eqn (41) shows that a = 0, since the integran~of (bA(r), hO(r, 9»
is of the form +(r) cos nO. The first equation of eqn (31) yields

e" (I
B = (hO, ~ubo ® bA) = Jo cos2 nO dO Jo ljI(r) dr "" 0 (42)

where +(r) depends on et>~, +~ and hA, which are not known in explicit form. However,
eqn (42) shows that B 7':- 0 is possible and (00, AO) is then a pitchfork bifurcation point.
In the computational scheme below, eqn (42) must be verified numerically. We note
in passing that

implies the saddle-point nature of the "bifurcation equation" observed in other elastic
stability problems.

Returning to the computation of bifurcation points, we observe that in the extended
system eqn (2) G(u, h, A) can be considered as a mapping

G: Bo x Bn x m- Bo x Bn x m (43)
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where G(u, A) = 0 represents the axisymmetric BVP (33), (34) given explicitly by eqn
(44) below, and Gu(u, A)b = 0 is equivalent to eqn (38) and boundary conditions. It
follows that u E Bo, h E Bn implies G,,(u, A)h E Bn • By the same argument as in the
proof of Theorem E it can be shown that a solution (uo, ho, Ao) of G(u, h, A) = 0 is
isolated if and only if (uo, Ao) is a pitchfork bifurcation point. Hence the numerical
verification of B :F 0 is equivalent to quadratic convergence of the Newton method.

Following the numerical implementation given in Section 5, we write the extended
system in such a form that standard software for ODEs is directly applicable. Equations
(38) are reduced to a system of ODEs by separating the cos nO part from b as in [2],
introducing dimensionless variables y, z, j, i. The result of these straightforward cal
culations is the following BVP for the computation of symmetry-breaking pitchfork
bifurcation points for clamped spherical shells under arbitrary axisymmetric pressure:

Lf = - fJ.g + AQ(X) + fg, Lg = fJ.f - ! P (44)

1'(0) = g'(O) = 0, f(1) = g'(l) + (l - lI)g(l) = 0

Lny = j, Lnz = i, Ln := Jl/dil + (2n + l)/x(d/dx)

Lnj = - fJ.i + (Knz)!' + fi, K,,: = d/dx - n(n - l)/x (45)

L"i = fJ.j + (Knz)g' - (K"y)f' + [gi - fj]

y'(O) = z'(O) = j'(0) = i'(O) = 0, z(l) = z'(1) = 0

yO) - (1 + lI)[y'(1) - n(n - l)y(l)] = 0

f(l) + nj(1) - (l + 1I)n2 [y'(l) + (n - l)y(l)] = 0

f = y2 + Z2 + y2 + i 2 ~(O) = 0, EO) =
A' = 0

where

L = d2/dx2 + (3/x)d/dx, Q(x) = (4/x2
) f: p(s)s ds.

For computing starting values for y, z, j, i at a regular point, Ais given, so A' = 0 is
dropped from eqn (47), the term in the brackets of eqn (45) is replaced by [gi - fj
+ c] and c' =0 is added to the above system. The BVP eqns (44)-(46) for the unknowns
f, g, y, y, z, i, Aand ~ is of order 14.

Finally, we wish to obtain information on the stability of the asymmetric branch of
solutions, which is related to the imperfection sensitivity of the structure [18]. In Fig.
t, the branches labeled D and E are stable (n = 2) and unstable (n = 3), respectively.
According to the general theory [16], the locally nonsymmetric branch Ca near a pitch
fork bifurcation point (uo, Ao) can be represented in the form

u = Uo + a<l>o 7- v(a) , A = Ao + ~(a)

~(a) = -(D/6B)a2 + 0(a2 ) , v(a) = o(a)

D : = g~~I3(O, 0) = (1\10, ~uu<l>o<l>o<l>o + 3~u<l>OWI)

WI : = solution of ~WI = ~u<l>o<l>o, (1\10, WI) = O.

(47)

Thus the sign of D/B decides on the stability of Ca. It appears then that imperfection
sensitivity as introduced by Koiter [18] can be derived directly from the above rep
resentation.
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For the spherical shell problem, D/3 reduces to (<f>o, G::II<f>ow.), the equations for WI

=: (V, W)1' are, in view of eqns (35), (37) and (38),

4 2 V - ~4W - K[g, V] - K[f, W] = -2K[<f>, \II]

4 2 W + ~4V + Klf, v] = Kl<l>, <f>]
(48)

together with eqn (34) applied to V and W. Since (<1>, \II) = hE Bn and (<1>0' WI) = 0,
it follows that V and W have the form

As in eqn (45), the BVP for V, W can be reduced to a system of ODEs by separation
of variables. The resulting equations are equivalent to those derived in earlier work on
imperfection sensitivity from Koiter's theory (see, for example [19]). We note that the
solution of the linear system (48) and the calculation of D is straightforward; more
details are found in [20].

10. NUMERICAL RESULTS

We present some examples from our calculations of simple and double axisymmetric
limit points and of simple asymmetric (pitchfork) bifurcation points using the extended
systems derived in the preceding sections. More extensive results for spherical caps
will be found in [20] for a variety of different loads and boundary conditions, including
some cases of nonuniform load, which have been discussed recently by Wan [21].

Table I shows examples of simple limit points for uniformly loaded shells, using the
system (10) applied to Reissner's equations [13]. In contrast to the sketch of Fig. 2, a
most noteworthy observation is that only very few regular solution points on the axi
symmetric p-v-curve need to be computed in order to extract sufficiently close starting
values for the extended system to converge to a limit point. Therefore, it becomes
possible to calculate symmetrical buckling loads much more precisely than in [1]. In
particular, only lower bounds for the buckling pressures P., = Ao/~2 were given in [1]
for ~ 2: 100, because a precise location of Pc presented considerable numerical diffi
culties due to the near-singularity of the system G(u, A) = O. With the present method,
no convergence difficulties were encountered in computing accurate values of Pc. The
number of regular solutions calculated before the singular solution was obtained is
given in the tables. Clearly, more iterations in the solution of the extended system are
needed if the program "jumps from a large distance" directly into the limit point. For
a simply supported shell, ~ = 100, the lower bound given in [1] is 0.755, which is close
to the value 0.75797 of Table 1. For a clamped shell, ~ = 100, the lower bound in [1]
is 0.780, whereas the accurate value is 0.81425.

Table I.

Clamped Regular solutions Simple limit points
edge A Ao Pc .. AoI",2 N

16 30, 60, 90, 120 146.81 0.57349 4
49 500, 1000, 1500 2554.3 • 1.06384 7

100 2000,4000,6000, BOOO 8142.5 0.81425 3

Simple
support

'" A Au Pc" AoI",2 N

5 1,2,3 10.956 0.43825 4
10 20,30,40 48.996 0.48996 4

100 2000. 4000, 6000 7579.7 0.75797 8

N .. number of Newton iterations to get Ao from last A(boldface).
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Table 2.

Regular solutions Double limit points
.... ~ >.0 ILo N

Clamped II 20.40,60 76.929 10.891 5
Simple suppon 5 2.5. 5, 7.5 9.626 4.544 6
Free edge 14 5. 10. IS 24.969 12.807 5

N = number of Newton iterations to get ~o from last ~ (boldface).

Table 3.

Clamped
edge

....
Regular solutions

~

Nonsymmetric bifurcation points
PII = >.0/....2

n=2 n=3 n=4 n=5 n=6 n=7

36
49
81

100

200,
400,

1500.
2000,

400,
800,

2500,
4000,

600
12003_
6000

0.77326 0.82750 0.93175
0.79326 0.75892 0.81139 0.90088

0.84515 0.77679 0.77656 0.81580
0.81263 0.77541 0.77935 0.81037

Table 2 shows examples of double limit points for shells under three different edge
conditions using the system (12): a clamped edge, a simply supported and a free edge.
For instance, starting with"" = 14, free edge, and calculating only three regular points
at A = 5, 10 and 15, the solution of the extended system yields a double limit point at
Au = 24.969, IJ.o = 12.807 after 5 iterations. Hence buckling of spherical caps with free
edge disappears for"" s 12.807. For these transition values IJ.o only very rough estimates
were given in [I], extrapolated from several p-v-curves calculated for a discrete set
of values of"" near 1J.o. Here the saving of computing time when employing the present
method is particularly striking.

Finally, we present some results for bifurcation points in Table 3. The observation
is again that only few regular points on the axisymmetric solution branch were computed
before switching to the solution of the extended system. In comparison to the computer
work in [2], the saving is quite remarkable. After Au is obtained for one value of n, the
solution (u, h, Ao) can be taken as starting value for computing Ao for n + 1 or n - I.
The numerical values of Table 3 for the nonsymmetric buckling pressures Au/""2 are
generally in good agreement with those of [2], but they are more precise and much
simpler to compute. .

From the experience gained with the calculations discussed above (and in [20]), we
may confidently conclude that stability problems of both shallow and nonshallow shells
of general shape can be accurately analyzed by the methods presented here. In par
ticular, the extension to shells of revolution presents no difficulties at all.
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